
A Mathematical Approach to DJ Transitions

Wyatt Mowery, Kevin Zhang, Michael Zhang

Massachusetts Institute of Technology (MIT)

wmowery@mit.edu, kevbev@mit.edu, mmz@mit.edu

May 13, 2025

1 Abstract

This project proposes a more efficient and objective
way for DJ’s to find the next song during a live set.
DJ’s work with playlists possibly consisting of hun-
dreds of songs and must be able to find and transi-
tion to another song within 60 seconds. This short
timeframe given to parse through a long list of songs
leads to many un-optimal choices, leading to tran-
sitions between songs that may not flow as well as
other options would have. Our project provides a so-
lution for DJ’s by vectorizing a playlist of songs. By
finding vector representations of the different quali-
ties of a song that allow for seamless transitions, we
allow DJ’s to input the current song they are playing
and our algorithm will return the top k songs that
are most similar to the current song. This ensures
an objective and mathematically-based way to iden-
tify the best song for the smoothest transition. To
test our hypothesis that our algorithm will provide
a better song, we conducted experiments with DJ’s
from MIT’s campus. We compared their choice of
song with our algorithm’s and proved that our al-
gorithm returned better songs, which we measured
with our song norm. Future work would be attempt-
ing to have our algorithm also find the timestamps
Ultimately, our research provides an alternative way
for DJ’s to select songs. This would make live sets
overall more fluid and entertaining with better music
and better transitions.

2 Methodology

2.1 Objective

The goal of this paper is to develop a mathematical
method for DJ’s to identify transitions from one song
to another. This section will detail the methodology
we employed to identify transitions between songs.

2.2 Song Feature Extraction and
Problem Formation

All audio files (.mp3 or .wav) were stored in a ”songs”
directory, in which we used a Python package Li-
brosa, to extract features from the song. We ex-
tracted the 1-dimensional tempo vector that recorded
beats per minute (BPM), the 26-dimensional timbre
vector that recorded the mood of the song, the 12-
dimensional key vector which recorded the key in a
which a song was played in, the 7-dimensional spec-
tral contrast vector which measured the energy of
the song, as well as the 2-dimensional loudness vec-
tor that measured the mean and standard deviation
of energy.

In total, for each song in the ”songs” directory, we
converted the song into a 48-dimensional vector that
we added to an A matrix, that will serve as a bank of
available songs to transition to. We made a b vector
as well, which is the vectorized song in which we want
to transition from. From here we use regression and
gradient descent strategies to find x, the optimal song

that is the best transition to any song in A, from the
song b.

2.2.1 Vector Representation Details

We would like to give a more in depth explanation as
to what each of the features in our vectorized song
represent. Beats per minute is a relatively straight-
forward statistic that measures the speed of a song.
The timbre vector is gained by extracting the Mel-
Frequency Cepstral Coefficients, which measure ex-
tremely short term power-spectrum’s of a song (20
millisecond windows). We then take the log of these
values to more accurately represent how humans hear
sound, and then apply a discrete cosine transforma-
tion over different frequencies. These different fre-
quencies mean that the first few MFCC’s capture
broader shapes in the timbre while the higher order
MFCC’s represent very fine grained spectral details.
When we take the mean over the entire song, it allows
us to collapse all these short frame measurements into
a single summary vector for the entire length of the
song. The key vector is calculated by extracting the
chroma features of a song, which represent the in-
tensity of each of the 12 different pitches across the
song. This allows us to find songs that will be able
to harmonize well. The energy vector is measured by
calculating the differences in peak vs valley across 7
different frequencies, and this allows us to find songs
that have similar sharpness and contrast so that we
can keep the energy level consistent. This is helped
by our final feature, which is the loudness vector,
which is measured by taking the root mean square of
the audio signal over the duration of the song, which
further helps us find songs with similar energies as we
transition. These 5 features allow us to capture all
the things that are important to creating high quality
transitions.
Figure 1 depicts a radar chart of our 48 dimen-

sional vector representation for 3 different songs. We
started with Party in the USA by Miley Cyrus (Blue)
and ran our algorithm to find the best transition can-
didate. The result we received was Butterfly Effect
by Travis Scott (red). In order to show how our al-
gorithm finds songs that are similar across the key
attributes we described above, we randomly selected

Figure 1: Song Radar Chart Visualization

a third song, Earfquake by Tyler, the Creator (Yel-
low). You can see that the blue and red lines, repre-
senting the songs we determined to be good matches,
follow each other quite closely as you rotate around
the chart, while the yellow line, representing a ran-
dom choice, deviates quite severely from the other
two, particularly in the tempo and key sections of
the chart, the two features we will end up valuing
above features like energy.

2.3 Constraint Design

Though we vectorized each song into a 48-
dimensional vector, it must be noted that particu-
lar dimensions in each ”song vector” play a more
important role in an optimal transition than oth-
ers. Namely, tempo and key play the biggest role
in determining a good DJ transition, thus we place
constraints on these two values. We define that for
a transition to be valid, the selected song must be
within ± 10% of the original song. Additionally, the
selected song must be within ± 1 semitone of the orig-
inal song. Should these constraints be violated, the
song will be excluded from consideration as a candi-
date for the optimal x, or transition.

2

2.4 Optimization via Constrained
Gradient Descent

To identify the best transition vector x, we solve the
following optimization problem:

min
x

∥Ax− b∥2W +λ ∥x∥2W s.t. xi ≥ 0,
∑
i

xi = 1

• A ∈ R48×n: feature matrix of candidate songs

• b ∈ R48×1: feature vector of the input song

• x ∈ Rn×1: weight vector representing how much
each song should contribute to the transition

• ∥·∥W : A custom song norm that accounts for
the relative importance of different features dur-
ing a transition (see section 3.5 for more details)

• λ: regularization parameter, set to 0.01

Note that in the optimization problem, we use the
constraint xi ≥ 0 since the vector x should tell us
how much of each song we should have in the optimal
transition, and we cannot have a negative amount of
a song.

2.4.1 Solving via Gradient Descent

The gradient of the objective function is as follows:

L(x) = ∥Ax− b∥2W + λ ∥x∥2W

L(x) = ∥W · (Ax− b)∥22 + λ ∥W · x∥22

∇xL = 2A⊤(W 2 · (Ax− b)) + 2λx

At each iteration of gradient descent, the gradient
is computed and used to update x in the negative
direction scaled by a factor of η, the learning rate.
Afterwards, x is projected back to the probability
simplex, or normalized such that

∑
xi = 1.

2.4.2 Importance of the Probability Simplex
Projection

We used probability simplex in order to ensure that
our results were usable. The probability simplex
“standardizes” our song vector x to ensure that our
probability distribution is wholly positive and that all
our probabilities sum to 1. This probability simplex
is defined below:

∆n−1 =

{
x ∈ Rn

∣∣∣∣∣xi ≥ 0 for all i,

n∑
i=1

xi = 1

}
.

This ensures that our x vector is a convex combina-
tion of songs. From a DJ’s perspective, this ensures
our code finds the top 3 songs of highest similarity,
and not an arbitrary signal reconstruction.

In order to enforce this constraint during each iter-
ation of gradient descent, we projected each xi onto
the simplex using a Euclidean projection algorithm.
The projection procedure sorts the entries of xi at
each step, computes a threshold such that subtract-
ing θ from each component of x results in a vector
that is non-negative and sums to one, and then clips
negative values to zero. These steps ensure that the
vector x is a valid probability distribution of songs at
each step. Formally, the project is implemented as
follows:

θ =
1

ρ+ 1

 ρ∑
j=1

uj − 1

 , x′
i = max(xi − θ, 0),

Here, u is the sorted vector x in descending order
and rho is the largest index satisfying uj − θ > 0.

Before adding in a probability simplex to our al-
gorithm, the optimal x vector we derived for a given
song contained negative aspects of other songs, and
the probability distributions never summed to one
due to the lack of standardization. Even when we
added in code to only take in positive values, the
songs our algorithm returned could be shown to have
little to no difference with randomly selecting songs.
With this fix, however, we were able to ensure that
the x vector returned only positive song contribu-
tions that summed to one, and thus have valid similar
songs returned.

3

2.4.3 Importance of Regularization

We also chose to employ regularization due to its im-
portance in producing unique and reasonable solu-
tions. Without regularization, the problem reduces
to solving for:

min
x

∥Ax− b∥2W s.t. xi > 0,
∑
i

xi = 1

However, if the number of songs n is less than 48,
the solution space to Ax = b contains infinitely many
minimizers leading to the issues of non-uniqueness.
This may lead to convergence towards extreme
solutions and general overfitting which may exploit
noise or small features in b that are not meaningfully
represented across the song bank matrix, A.

By adding the regularizer λ ∥x∥22 to the loss
function, a unique solution is guaranteed even
when n < 48. Additionally, this regularizer term
would help prevent overfitting and would cause the
optimizer to spread the weight across a range of
songs instead of on just one or two songs, unless
those songs clearly are the best match of course.

2.5 Defining the Song Norm

As certain features are more important in deciding
good DJ transitions, we introduce a weighted norm,
which will be referred to as the song norm. This
norm increases the influence that certain features,
namely the tempo and the key of a song, have when
calculating the distance between songs. This is
needed as it ensures that the loss function properly
penalizes mismatches in these vital dimensions more
so than in others.

Suppose the difference between a predicted song x
and the optimal song b is defined as z = Ax−b ∈ R48.
Let W ∈ R48 be a vector of positive weights repre-
senting how much each feature of a song should be
weighted. The song norm is defined as following:

∥z∥W :=

√√√√ 48∑
i=1

W 2
i z

2
i = ∥W · z∥2

W ∈ R48 is initialized as a column vector of
all ones, which assigns equal importance to all
features initially. We then set W0 = 6 where index
0 corresponds to the tempo of a song, the highest
weighted feature. Additionally, we then changed
indices W2 through W5 to be 2, as the lower order
MFCC’s represent the broader spectral envelope of
the song and we would like to weight those higher
than the finer grained information delivered by the
higher order MFCC’s. Lastly, we set W14 through
W25 to be 4, as these indices correspond to the key
of a song, as the key is the second most important
factor in providing a smooth transition from song
to song. The remainder of the features remain
unweighted, meaning they have weight 1.

2.5.1 Proving the Song Norm is a Valid
Norm

We will first prove positive definiteness meaning
∥z∥W ≥ 0 and ∥z∥W = 0 ⇐⇒ z = 0. Since
each W 2

i > 0 and z2i ≥ 0, there sum will always be

non-negative, and thus
∑48

i=1 W
2
i z

2
i will always be

non-negative and ∥z∥W = 0 only when z = 0.

We will next prove homogeneity meaning
∥αz∥w = |α| · ∥z∥w. This is proven by observ-
ing:

∥αz∥W =
√∑

W 2
i (αzi)

2 =
√

α2
∑

W 2
i z

2
i = |α|·∥z∥W

Lastly, we must prove that the triangle inequality
holds true, meaning that for all z1, z2 ∈ R48,

∥z1 + z2∥w ≤ ∥z1∥w + ∥z2∥w

This is proven true by observing:

∥z1+z2∥W = ∥W ·(z1+z2)∥2 ≤ ∥W ·z1∥2+∥W ·z2∥2 = ∥z1∥W+∥z2∥W

Therefore, since the song norm ∥z∥W satisfies all pos-
itive definiteness, homogeneity, and the triangle in-
equality, it is a usable and valid norm.

4

2.6 Interpreting the Transition Vector

The output vector x ∈ Rnx1where
∑

xi = 1 repre-
sents a similarity distribution over the n available
songs in A (not including the current song b). Each
entry xi ∈ [0, 1] represents how much the ith song of
A contributes to the optimal transition from song b.

To select the best candidate for the transition,
we compute the argmax of x which returns the index
i of the song that contributes the most towards the
transition from song b. The corresponding feature
vector is simply the ith column of the matrix A
in which we can use to trace back to the name of
the song that serves as the optimal transition from
song b. In practice, we may choose to take the top
k highest values in x and provide a ranked list of
transition candidates to allow for flexibility and
creativity from DJ’s.

3 Experiments and Results

3.1 Evaluating our Algorithm

In order to test our alrogithm’s efficacy, we randomly
chose 5 songs and asked 5 MIT DJ’s to choose the
next best song given our entire playlist. To make the
trial as close to a live set as possible, we gave the
5 MIT DJ’s 3 minutes to review the list of all the
songs in the playlist. Then, we gave them the name
of one of the 5 songs and gave them 30 seconds to
choose their next best song. We soon realized that
the MIT DJ’s generally did not have a good sense of
what song to choose next. Many of them claimed to
simply choose more or less “randomly” during sets
and only a few paid minor attention to song details
like beats per minute. As a result, our team chose to
continue this project by simply randomly selecting 5
different songs from the playlist to simulate a DJ’s
choices.
We then compared the difference in song norms

between our algorithm’s top choice of song against
the 5 randomly chosen songs. The results are shown
below:
From the chart and the graph, it is very clear

that our algorithm (blue) selects much better song

Figure 2: Difference in Song Norm between Human
and Algorithm

matches compared to a human (red) who more or less
randomly selects songs. Furthermore, our algorithm
consistently has a 85-95

To test statistical significance, we used a one-sided
Welch’s t-test. We compared the 25 random songs to
the 5 songs returned by our algorithm. Our resulting
t-score was 3.98, which correlates with a p-value of
p = 0.00027. Because our p-value is much less than
0.01, we concluded with 99% confidence that there is
statistical significance between the similarities with
the songs that our algorithm returns and random hu-
man song choices. These values are shown in table 1
below.

3.2 Additional Visualization

Additionally, we wanted a way in which we could vi-
sualize the distances of the vectors from each other,
thus, we ran Principle Component Analysis to reduce
the dimensionality from 48 dimensions to 3 dimen-
sions. Subsequently, we ran a 3 dimensional visual-
ization to visualize the distance from the song we are
transitioning from b, to the optimal song we found
using our method, as pictured below in figure 3 and
figure 4.

5

Song Mean Random Dist. Best Dist. Improvement vs. Random
DNA by Kendrick Lamar 32.04 0.6653 97.9%
One More Time by Daft Punk 4.42 0.5784 86.9%
Fire Burning by Sean Kingston 57.44 0.2866 99.5%
Baby by Justin Bieber 17.21 0.4485 97.4%
Hotline Bling by Drake 10.77 0.3043 97.2%

Table 1: Comparison of Best Match Distance to Mean Random Distance

Figure 3: Angle 1

Figure 4: Angle 2

4 Discussion

Our results demonstrate that a mathematical,
feature-driven approach to DJ transitions can out-
perform human intuition and are a vast improvement
over a random choice. We would like to provide fur-
ther context for why we found creating the ”song
norm” to be necessary to creating an algorithm is able
to preform strongly against other selection methods.

4.1 Song Norm vs. Dot Product

In evaluating the quality of song recommendations
produced by our algorithm, we compared the re-
turned songs to a target song with a dot product
similarity and song norm difference. While our algo-
rithm did demonstrate a statistically significant im-
provement upon song norms, there was no significant
difference in dot product similarity. The following
section talks about the difference between the song
norm and dot product and why our algorithm only
returned statistical significance in one of the two.

Our weighted norm distance measures overall sim-
ilarity across tempo, timbre, harmony, spectral con-
trast, and loudness. Our algorithm directly aims to
minimize this weighted norm distance, which we have
shown it statistically does.

On the other hand, the dot product between two
songs measures the raw alignment between the two
vectors without accounting for magnitude. While the
dot product is often used as a measurement for sim-
ilarities, un-normalized dot products do not work as
well in high-dimensional spaces, like our project (48
dimensions). This is because the dot product will
be dominated by large feature values rather than ac-
tual meaningful structural overlap. For instance, two
songs may be nearly identical in structure but differ

6

in volume, which results in a small dot product de-
spite high perceptual similarity. On the other hand,
two songs that are both fast, but with little other
similarities may be reflected with a larger dot prod-
uct.
Ultimately, this mismatch arises because the dot

product fails to normalize for vector length. If we
had somehow normalized all of our song vectors be-
forehand, the dot product would have been a better
tool to measure song similarities. Thus, the lack of
statistical significance in the dot product does not re-
flect a failure in our algorithm, but rather shows met-
ric misalignment. Our optimization algorithm seeks
to directly minimize norm distance, and not the dot
product.

4.2 Future Work

We believe that this algorithm could be the founda-
tion of a successful, full-stack application that makes
becoming a DJ easier and more accessible for all,
however there are some features that would need to
be added.
Currently, each song is represented by a single sum-

mary vector derived from the average of time-varying
features across the entire track. This global represen-
tation ignores local temporal dynamics that often de-
termine ideal transition points. A natural extension
of this work would be to retain the full time series
matrix of extracted features (e.g., MFCCs, chroma,
spectral contrast) and compute local similarities be-
tween segments of songs. This would allow us to also
suggest timestamps that represent points in the two
songs where the transtion between the two would be
smoothest, further helping DJ’s make quicker deci-
sions during a live set. Futher updates to the algo-
rithm would be the potential to look ahead to what
the next transition might be to ensure fluidity over
the entirety of the set.
We also would need to provide a more user-friendly

interface. There is no front end work on this project
yet and if this were to be an application pushed to the
public that would have to change. Allowing users to
connect to popular streaming services such as Apple
Music or Spotify would make this app much more
accessible. This would allow the interface to become

much simpler, as a DJ could input the song currently
playing and receive the suggestions from the playlists
they have created.

The last step would be to try and implement re-
inforcement learning techniques that would learn the
style of the user over time. It would be able to learn
certain genres that the particular user tends to grav-
itate towards as well as favorite songs they always
play.

5 Conclusion

This paper introduces a novel, mathematically based
way to identify transitions between songs. This algo-
rithm encodes songs into a high-dimensional feature
space based off of their tempo, timbre, key, and en-
ergy. From there we use constrained gradient decent
along with a ”song norm” that weights the more im-
portant features in determining a smooth transition,
tempo, key, and broad spectral envelope, to find the
songs that are the best candidates for a transition
based off of these methods.

Our experimental results show our algorithm has a
significant difference over randomly choosing a song
and leads to finding songs that are extremely closely
aligned across the board. These results give us confi-
dence that the algorithm developed here, with some
additional extensions and features, could be the foun-
dation for an extremely useful tool in DJ’s lives.

7

References

[1] “Librosa: Audio and Music Signal Analysis in
Python,” Librosa Documentation, 2025. [On-
line]. Available: https://librosa.org/doc/

latest/index.html.

[2] B.-Y. Chen, W.-H. Hsu, W.-H. Liao, M. A.
Mart́ınez-Ramı́rez, Y. Mitsufuji, and Y.-H.
Yang, “Automatic DJ Transitions with Differ-
entiable Audio Effects and Generative Adversar-
ial Networks,” arXiv preprint arXiv:2110.06525,
2021. [Online]. Available: https://arxiv.org/
abs/2110.06525.

[3] T. Kim, M. Choi, E. Sacks, Y.-H. Yang, and J.
Nam, “A Computational Analysis of Real-World
DJ Mixes Using Mix-To-Track Subsequence
Alignment,” arXiv preprint arXiv:2008.10267,
2020. [Online]. Available: https://arxiv.org/
abs/2008.10267.

[4] E. Liebman and P. Stone, “DJ-MC: A
Reinforcement-Learning Agent for Mu-
sic Playlist Recommendation,” Proceedings
of the 14th International Conference on
Autonomous Agents and Multiagent Sys-
tems (AAMAS), 2015. [Online]. Available:
https://www.ifaamas.org/Proceedings/

aamas2015/aamas/p591.pdf.

[5] C. Deruty, “Intuitive Understanding of
MFCCs,” Medium, 2019. [Online]. Avail-
able: https://medium.com/@derutycsl/

intuitive-understanding-of-mfccs-836d36a1f779.

[6] D. Abbattista, V. W. Anelli, T. Di Noia, C.
Macdonald, and A. V. Petrov, “Enhancing Se-
quential Music Recommendation with Person-
alized Popularity Awareness,” arXiv preprint
arXiv:2409.04329, 2024. [Online]. Available:
https://arxiv.org/abs/2409.04329.

[7] C.-Y. Chiu, M. Müller, M. E. P. Davies,
A. W.-Y. Su, and Y.-H. Yang, “An Analy-
sis Method for Metric-Level Switching in Beat
Tracking,” arXiv preprint arXiv:2210.06817,

2022. [Online]. Available: https://arxiv.org/
abs/2210.06817.

[8] “Mix-To-Track Subsequence Alignment
Code Repository,” GitHub, 2025. [Online].
Available: https://github.com/mir-aidj/

djmix-analysis.

8

https://librosa.org/doc/latest/index.html
https://librosa.org/doc/latest/index.html
https://arxiv.org/abs/2110.06525
https://arxiv.org/abs/2110.06525
https://arxiv.org/abs/2008.10267
https://arxiv.org/abs/2008.10267
https://www.ifaamas.org/Proceedings/aamas2015/aamas/p591.pdf
https://www.ifaamas.org/Proceedings/aamas2015/aamas/p591.pdf
https://medium.com/@derutycsl/intuitive-understanding-of-mfccs-836d36a1f779
https://medium.com/@derutycsl/intuitive-understanding-of-mfccs-836d36a1f779
https://arxiv.org/abs/2409.04329
https://arxiv.org/abs/2210.06817
https://arxiv.org/abs/2210.06817
https://github.com/mir-aidj/djmix-analysis
https://github.com/mir-aidj/djmix-analysis

