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Abstract

We present a two-phase pipeline for analyzing basketball
shooting form using pose-sequence embeddings learned
through contrastive learning. In Phase 1, we employ self-
supervised contrastive pretraining to learn general mo-
tion representations from unlabeled 2D keypoint sequences.
Phase 2 then refines these embeddings using supervised
triplet loss for two downstream tasks: shooter identifica-
tion and shot-type classification. Despite subtle visual dif-
ferences between shot types, our method achieves strong
classification accuracy across 100 trials, including 91.6%
on shooter identity and 90.2% on shot-type recognition for
one participant. Beyond classification, we introduce inter-
pretable tools, such as directional deviation heatmaps, pose
overlay scrubbing, and t-SNE visualizations, that allow ath-
letes to compare their form to baselines, diagnose incon-
sistencies, and track improvement. Our results suggest
embedding-based pose analysis may be a promising frame-
work for training feedback in sports applications, as well as
for personalized motion understanding more broadly.

1. Introduction

Shooting is obviously one of the most critical and indi-
vidualized skills in basketball; however, most players and
trainers rely heavily on qualitative assessments of form –
such as video review or subjective feedback. These meth-
ods are inherently limited by human perception and bias,
especially when it comes to detecting fine-grained devia-
tions or understanding how form varies across shot types
and contexts.

Recent advances in computer vision and pose estimation
offer a compelling alternative: extracting structured, inter-
pretable keypoints from video data. This enables quanti-
tative analysis of shooting mechanics without the need for
manual annotation or intrusive sensors. However, raw pose
data is high-dimensional and can be difficult to analyze
directly. To address this, we propose a novel two-phase

pipeline that learns low-dimensional embeddings of pose
sequences via contrastive learning, enabling both classifi-
cation and visual interpretation of shooting form.

Our pipeline first applies self-supervised contrastive pre-
training to learn general representations of mechanics from
pose sequences without requiring labels. We then fine-tune
the model in a supervised setting using triplet loss for two
downstream classification tasks: (1) shooter identification
and (2) shot-type classification. In addition to strong quan-
titative results on both tasks, we introduce a collection of
visual tools - including t-SNE embedding maps, deviation
heatmaps, and a pose-scrubbing tool, which allow users to
diagnose discrepancies and gain actionable insights.

Our method is designed to support a range of use cases,
from helping players understand how their form breaks
down over time (e.g., due to fatigue or context) to compar-
ing themselves to others and modeling their form after elite
shooters. In this paper, we demonstrate that such a system
can produce meaningful embeddings and serve as a founda-
tion for future training tools in basketball and beyond.

2. Related Work

Our approach builds on two key lines of research: con-
trastive learning for self-supervised representation learning
and pose-based modeling of human motion.

Contrastive learning has recently emerged as a powerful
technique for learning meaningful embeddings without la-
beled data. Frameworks like SimCLR [1] and MoCo [3]
optimize neural encoders to pull together representations of
augmented views of the same input while pushing apart dif-
ferent inputs. These methods have demonstrated strong per-
formance across vision, language, and other domains, and
they form the basis of our self-supervised Phase 1.

Pose-based action recognition methods represent motion
using sequences of skeletal keypoints extracted from video.
This paradigm has proven effective for a variety of tasks,
including action classification [2], sign language recogni-
tion [6] and sports performance analysis. Temporal mod-
eling techniques such as LSTMs and 1D temporal convo-



lutions are frequently employed to capture dynamic depen-
dencies across time, as we do in our LSTM-based embed-
ding network.

Triplet loss and supervised metric learning are com-
monly used to refine embedding spaces for classifications
or retrieval tasks. Triplet loss was introduced in the context
of face recognition [5], where it enabled robust identifica-
tion by enforcing distance constraints in the learned space.
More recent work has shown its utility for fine-grained ac-
tion recognition [4], where class distinctions may be subtle
and hard to separate using traditional classification objec-
tives. In our Phase 2, we apply triplet loss to encourage em-
bedding separation across shooter identities or shot types,
depending on the task.

While contrastive learning and triplet-based metric
learning have seen wide application in domains such as
person identification or biometric verification, our work is,
to the best of our knowledge, the first to apply this two-
stage embedding learning framework to basketball shooting
form analysis. This opens up new opportunities for athlete-
specific performance feedback grounded in both quantita-
tive and visual interpretation.

3. Methodology
3.1. Data Collection and Preprocessing

Our dataset was constructed from a controlled basket-
ball shooting session involving two players, Landon Dolvin
and Luke Wagner, hereafter referred to as LD and LW, re-
spectively. Each participant recorded 90 total normal shots,
split into three categories: Catch and Shoots (30 shots), Side
Steps (30 shots), and Step Backs (30 shots). To evaluate
model robustness to poor mechanics, we also included 10
shot sequences for each shooter in which they intentionally
executed distorted or ”bad” form versions of their shots.

Recordings were captured from a stationary and there-
fore consistent position in a well-lit indoor gym environ-
ment using an iPhone 13 camera. All videos were then man-
ually trimmed to include only the frames from the point at
which the shooter gathered the ball to release, and then later
downsampled to 64 frames per sequence for consistency
across samples. By trimming the videos to only include the
gather-to-release segment, we eliminate the model’s abil-
ity to ”cheat” when later classifying shot types—such as by
simply recognizing the pre-shot setup (e.g., whether the ball
was passed for a Catch and Shoot, or whether the shooter
approached from the left or right, as in a Step Back or Side
Step, respectively).

3.2. Pose Extraction and Normalization

To facilitate self-supervised pretraining and downstream
analysis, each video was processed to extract 2D skeletal
keypoints using the YOLOv8-Pose model. This model out-

Figure 1. Original video frame (left) alongside its corresponding pose esti-
mation output (right), generated using the YOLOv8-Pose model to extract
skeletal keypoints for downstream motion analysis.

puts 17 joint coordinates per frame, capturing key anatom-
ical points such as shoulders, elbows, hips, knees, and an-
kles. As illustrated in Figure 1 , the extracted poses provide
an expressive representation of a shooter’s form at a spe-
cific moment in time. These pose vectors were then stacked
across all 64 frames.

For alignment and comparability across samples, each
pose sequence was normalized by translating keypoints rel-
ative to the left shoulder (joint 5). This ensured that motion
dynamics—rather than absolute joint locations—were the
primary features used for learning representations.

3.3. Phase 1: Contrastive Pretraining

To pretrain the model with meaningful representations
of shooting motion, we adopt a self-supervised contrastive
learning framework in Phase 1. The goal is to train the net-
work to produce embeddings that cluster similar shooting
sequences close together in the learned space, without rely-
ing on explicit labels.

For each video, we generate positive pairs by creat-
ing 100 different augmentations of the pose sequence.
These augmentations apply Gaussian jitter and random joint
masking, encouraging the model to be robust to minor vari-
ations in motion while preserving the underlying shooting
form. Negative pairs are sampled from different videos. A
contrastive loss is used to minimize the distance between
embeddings of positive pairs while maximizing the distance
from negatives.

The architecture consists of an LSTM network that pro-
cesses each 64-frame pose sequence and outputs a fixed-
dimensional embedding. This sequential encoder captures
temporal dynamics in joint motion.

3.4. Phase 2: Supervised Fine-Tuning

After learning general motion representations in Phase
1, we fine-tune the model in a supervised manner to per-
form two downstream classification tasks: shooter identity
(predicting whether LD or LW shot the ball), and shot type



(classifying a shot as a Catch and Shoot, Step Back, or Side
Step). The latter task is considerably more challenging,
as form differences are often subtle and difficult to distin-
guish—even for the human eye.

For this phase, we utilize Triplet Loss, which encourages
the model to refine its embeddings such that they are both
invariant to intra-class variation and discriminative across
classes. Each training example consists of an anchor, a pos-
itive sample from the same class, and a negative sample
from a different class. The loss enforces that the distance
between the anchor and positive is smaller than the distance
to the negative by at least a specified margin.

Triplets are generated from pose sequences that are man-
ually labeled by shooter or shot type. The result is an em-
bedding space where sequences are well-clustered either
by shooter or, more granularly, by shot type for a specific
shooter.

3.5. Evaluation Metrics

3.5.1 Classification Accuracy and Confusion Matrices

To quantitatively assess the effectiveness of our learned em-
beddings in downstream classification tasks, we report clas-
sification accuracy and include confusion matrices for both
shooter and shot-type prediction.

Accuracy is computed as the proportion of correctly pre-
dicted labels on a randomly held-out validation set. We re-
peat training and evaluation over multiple randomized trials
to account for variation due to noise in validation set se-
lection and optimization, reporting both the mean accuracy
and standard deviation.

In addition to accuracy statistics, we visualize confusion
matrices for these randomized trials, which provide a more
detailed view of performance by breaking down true versus
predicted label distributions. This helps us identify specific
limitations within the model’s learned embeddings. These
confusion matrices are especially important in the shot-type
classification task, where the three classes are visually sim-
ilar and difficult to distinguish.

All evaluations are performed using k-Nearest Neigh-
bors (k-NN) with k = 3 on the learned embedding vectors.

3.5.2 t-SNE Visualization

To qualitatively evaluate the structure of the learned em-
bedding space, we apply t-distributed Stochastic Neighbor
Embedding (t-SNE) to project the high dimensional embed-
dings into two dimensions. This allows us to visualize how
well the model separates classes in both Phase 1 and Phase
2.

Figure 2. Vertical deviation heatmap comparing LW’s normal shooting
form to his purposely distorted form, highlighting frame-by-frame VER-
TICAL joint displacement (Red represents deviation upwards).

Figure 3. Pose overlay at frame 50 comparing LW’s normal shooting form
to his purposely distorted form. Joint corrections are visualized as arrows
between corresponding keypoints, illustrating deviations frame-by-frame
(interactive scrubber omitted here for static presentation).

4. Additional Analysis Tools
4.1. Directional Deviation Heatmaps

To provide frame-level interpretability of form discrep-
ancies, we introduce directional deviation heatmaps that
compare a given pose sequence (i.e., shot form) to a ref-
erence or base shooting form of choice. For each frame
and joint, we compute horizontal and vertical deviations in
pixel space relative to this base form—typically an ”ideal”
shot depending on the use case. These heatmaps make dis-
crepancies in form easy to visualize and serve as high-level
diagnostic tools for generating interpretable insights.

As an example, Figure 2 shows the vertical deviation
heatmap for LW’s purposely distorted shot compared to his
average normal form. Here, positive (red) values repre-
sent upward deviation, and negative (blue) values represent
downward deviation. These heatmaps enable interpretable,
joint-level feedback for analyzing breakdowns in shooting
form.

4.2. Frame-by-Frame Pose Overlay Scrubbing Tool

To further support closer analysis of shooting form, we
also implement an interactive frame-by-frame overlay tool
that visualizes joint-level discrepancies between pose se-



Figure 4. t-SNE visualization of validation embeddings after Phase 1
(Self-Supervised Contrastive Pretraining). Positive pairs were generated
from augmented segments of the same shot, encouraging the model to learn
pose-consistent embeddings. Points are color-coded by shooter and form
type.

Figure 5. t-SNE visualization of refined embeddings after Phase 2
(Shooter Classification). Supervised contrastive training encourages sepa-
ration between shooters. Points represent shot sequences, color-coded by
shooter and split into training and validation sets.

quences. For each frame, the tool displays the correspond-
ing joint positions from two shots, with blue lines connect-
ing the direction and magnitude of necessary corrections to
go from one form to the other. This visualization allows
users to scrub through the sequence and observe how form
deviates over time. Figure 3 shows an example from this
tool, with the interactive functionality omitted for static pre-
sentation.

5. Experimental Results

5.1. Embedding Quality and Clustering Behavior

As a first step in evaluating the learned embeddings,
we utilize t-SNE visualizations at multiple stages of the
pipeline.

Figure 4 displays the validation set embeddings im-
mediately after Phase 1 (Self-Supervised Contrastive Pre-
training). As described above, the model was trained
to pull together augmented segments of the same video
while pushing apart embeddings from different shot se-
quences. The color-coded groupings demonstrate strong
performance, with distinct clusters already forming for each

Figure 6. t-SNE visualization of refined embeddings for LW’s shot types.
Supervised contrastive training separates Catch, Step, and Side shots into
distinct clusters. Points are color-coded by shot type and split by training
vs. validation sets.

Figure 7. Confusion matrix for shooter classification over 100 trials. The
model accurately distinguishes between LD and LW with minimal cross-
shooter confusion. Rows represent true labels; columns represent predicted
labels.

video. While not the primary goal of this stage, the model
has already begun to capture differences in shooter and shot
type, showing early signs of separation.

Figure 5 presents the embedding space after Phase 2
fine-tuning for shooter classification (LD vs. LW). The ad-
dition of supervised triplet loss significantly improves class
separability, with clear clusters forming for each shooter.
Both training and validation points are shown, indicating
that the model generalizes beyond its training set.

Alternatively, Figure 6 presents the embedding space
when trained on shot-type labels (Catch and Shoot, Step
Back, and Side Step) for LW. Despite the subtle visual
differences between these three types of shots—especially
when performed by the same shooter—the model is still
able to learn well-separated clusters. This indicates that
the learned representations are expressive enough to capture
fine-grained distinctions in motion.

5.2. Shooter Classification Performance

To better evaluate the robustness of the learned embed-
dings to randomization noise, we conducted 100 random-
ized trials of the shooter classification task. The aggregated
confusion matrix is shown in Figure 7, where the model



Figure 8. Shot type classification confusion matrix for LW. The model
reliably distinguishes between Catch, Step, and Side shots, with minimal
confusion across categories. Rows indicate true shot types; columns indi-
cate predicted labels.

consistently distinguishes between LD and LW with min-
imal cross-shooter confusion. The strong diagonal domi-
nance indicates stable prediction performance across trials
for both classes.

Overall, the model achieved a mean classification accu-
racy of 91.57% with a standard deviation of 4.75%, high-
lighting its robustness to variation in validation splits and
optimization conditions.

5.3. Shot-Type Classification Performance

To assess the model’s ability to differentiate on the alter-
native shot-type classification task for LW, we present re-
sults in Figure 8. The model accurately classifies Catch and
Shoot, Step Back, and Side Step shots with minimal confu-
sion across categories. The strong diagonal in the confu-
sion matrix once again reflects reliable and consistent pre-
dictions across all three shot types.

This task is particularly challenging because, during pre-
processing, each shot was trimmed to begin after the gather
phase, meaning the model cannot rely on visual cues from
the shot setup—such as whether the ball was passed (Catch
and Shoot) or whether the player moved right and laterally
or left and backward (Side Step or Step Back). Instead, the
model must infer shot type solely from the pose dynamics
during the shooting motion itself, which may appear nearly
identical to the human eye. Despite this difficulty, the model
still achieves an impressive average classification accuracy
of 90.20% with a standard deviation of 7.02% across 100
randomized trials. This result demonstrates that the learned
embedding space captures subtle, yet meaningful, differ-
ences in motion that distinguish between these nuanced shot
types.

6. Discussion
6.1. Use as a Shot Analysis Tool

One of the most powerful byproducts of learning a mean-
ingful embedding space is the ability to detect and analyze

Figure 9. Side-by-side comparison of LW’s normal shooting form (left)
and intentionally distorted form (right).

Figure 10. t-SNE embedding of LW’s Catch and Shoot attempts, con-
trasting normal (good) form with purposely distorted (bad) form. Cluster-
ing indicates clear separation in the learned representation space, with bad
shots (black) tightly grouped and distinct from the distributed good form
embeddings (red).

deviations in a shooter’s form—often caused by fatigue, dis-
comfort with a particular shot type, or simply poor mechan-
ics. For instance, some players naturally struggle more with
certain types of shots; even in the NBA, athletes are often
categorized as strong “Catch and Shoot” shooters or “Off
the Bounce” shooters (i.e., shooting off the dribble). Be-
cause each embedding encodes the mechanics of a shot into
a compact representation, new attempts can be visualized
in relation to others using the t-SNE projection. This al-
lows athletes to quickly identify when their form begins to
drift from a known baseline. For example, a player might
observe that their shot embeddings begin to cluster differ-
ently after multiple repetitions or when executing specific
shot types, indicating a form breakdown potentially caused
by fatigue or instability—issues that can then be targeted in
training.

The learned embedding space also enables comparative
insights across players. Using t-SNE visualizations, an ath-
lete can explore whose form their shots most closely resem-
ble, gaining inspiration from particular mechanics or con-
sistency. Alternatively, a player can select a target shooter
they want to emulate and leverage the previously described
tools to analyze how far their current form is from that



ideal—and more importantly, how to adjust their training
to close the gap.

To demonstrate the practical value of our analysis tools,
we examine LW’s “Bad” shots in comparison to his “Good”
shots (defined here as his standard Catch and Shoot form).
As context, Figure 9 illustrates a synchronized freeze-
frame from both forms at the same point in the shooting mo-
tion. The “Bad” form is visibly inefficient, with a behind-
the-head release that introduces unnecessary variability and
reduces efficiency.

The first step in identifying such breakdowns is simply
recognizing that a problem exists. In Figure 10, the t-SNE
embedding clearly separates LW’s “Bad” shots from his
“Good” ones, suggesting that the model has learned to rep-
resent these distortions meaningfully. In a real training con-
text, this kind of visualization could help a coach or player
immediately flag a deviation and investigate further using
targeted tools.

The Vertical Deviation Heatmap especially provides a
very striking evidence of form breakdowns, highlighting
substantial misalignments in the vertical dimension. Fo-
cusing on the same moment captured in the freeze-frames
(Frame ∼50, after sequences are normalized to 64 frames),
we observe that LW’s arms—and consequently his release
point—are significantly shifted upward, as shown by the
deep red coloration in Figure 2. This reflects the primary
flaw in his “Bad” form: a behind-the-head release that dis-
rupts both efficiency and consistency.

To further analyze and correct this flaw, LW could then
turn to the interactive Scrubber Tool (Figure 3), which pro-
vides a frame-by-frame overlay of his normal and distorted
forms. By observing joint-level deviations throughout the
motion cycle, he can better understand when and how his
form diverges. Equipped with this insight, LW could then
design targeted drills to reinforce proper mechanics, helping
him make concrete improvements and enhance his shooting
performance overall.

6.2. Limitations

While the model shows strong performance across most
tasks, there are a few limitations to note. One of the most
prominent issues arises in the shot-type classification task
for shooter LD as the model struggles to distinguish be-
tween LD’s Catch and Shoot shots and Step Backs. This
suggests that LD likely exhibits less mechanical variation
between the two shot types than, for example, LW. As a
result, embeddings for these shots significantly overlap in
the learned space (Figure 11), leading to a reduced classi-
fication accuracy of 59.40%—a noticeable drop compared
to the 90%+ accuracy achieved for LW. Even this, however,
offers some insight: it indicates that LD’s Step Back mo-
tion is quite similar to his Catch and Shoot, which may be
an encouraging sign of consistency for the shooter.

Figure 11. Learned embedding space for shooter LD after Phase 2 super-
vision. While Side shots remain well-separated, there is significant overlap
between Catch and Step shots, reflecting the difficulty the model has in dis-
tinguishing those shot types for this shooter.

Another important limitation is the curated nature of our
dataset. All videos were recorded under controlled condi-
tions, with clean framing and no occlusions. Real-world ap-
plications—such as in-game footage or spontaneous shoot-
ing practice—would introduce additional challenges, in-
cluding camera motion, partial occlusion, lighting variation,
and more. Robustness to these factors would require further
development, such as domain adaptation strategies or train-
ing on a more diverse dataset.

6.3. Future Extensions

While our current system performs well under controlled
conditions, there are several promising directions for fu-
ture work. First, expanding the dataset to include in-game
or unstructured shooting footage would test the robustness
of the pipeline and broaden its applicability. Addition-
ally, integrating real-time feedback tools—such as alerting
shooters when their form deviates significantly from base-
line—could transform the system into an actionable, on-
court training aid.

7. Conclusion

This work introduces a novel pipeline for analyzing bas-
ketball shooting form using pose-sequence-based embed-
dings learned through contrastive learning. By combining
self-supervised pretraining with supervised fine-tuning, our
two-phase approach achieves strong performance on both
shooter identification and fine-grained shot-type classifica-
tion tasks—even when visual differences, at least to the hu-
man eye, are quite subtle. Beyond classification, we present
a suite of interpretability tools—including t-SNE visualiza-
tions, deviation heatmaps, and a pose scrubber—that en-
able athletes and coaches to gain actionable insights into
shooting mechanics. Our results highlight the potential of
embedding-based analysis as a powerful framework for per-
sonalized training, with promising applications both in bas-
ketball and in other domains involving motion analysis.



8. Contributions
Both authors contributed jointly to the core idea and

collaborated closely throughout the project. Landon led
data collection and was primarily responsible for the de-
velopment and implementation of the Phase 2 supervised
fine-tuning pipeline. Michael focused on Phase 1 self-
supervised pretraining and the design of the interpretabil-
ity tools. All major components were developed in active
collaboration.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 1

[2] Yong Du, Wei Wang, and Liang Wang. Hierarchical recur-
rent neural network for skeleton based action recognition. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1110–1118, 2015. 1

[3] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 9729–
9738, 2020. 1

[4] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-
fense of the triplet loss for person re-identification. arXiv
preprint arXiv:1703.07737, 2017. 2

[5] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015. 2

[6] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal
graph convolutional networks for skeleton-based action recog-
nition. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018. 1


	. Introduction
	. Related Work
	. Methodology
	. Data Collection and Preprocessing
	. Pose Extraction and Normalization
	. Phase 1: Contrastive Pretraining
	. Phase 2: Supervised Fine-Tuning
	. Evaluation Metrics
	Classification Accuracy and Confusion Matrices
	t-SNE Visualization


	. Additional Analysis Tools
	. Directional Deviation Heatmaps
	. Frame-by-Frame Pose Overlay Scrubbing Tool

	. Experimental Results
	. Embedding Quality and Clustering Behavior
	. Shooter Classification Performance
	. Shot-Type Classification Performance

	. Discussion
	. Use as a Shot Analysis Tool
	. Limitations
	. Future Extensions

	. Conclusion
	. Contributions

